Part Number Hot Search : 
ML9213GP VCX162 N60S5 82531040 40007 2SC3007 AQM24 N60S5
Product Description
Full Text Search
 

To Download DS90LV028AH Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  nrnd DS90LV028AH www.ti.com snls201a ? september 2005 ? revised april 2013 DS90LV028AH high temperature 3v lvds dual differential line receiver check for samples: DS90LV028AH 1 features description the DS90LV028AH is a dual cmos differential line 2 ? -40 c to +125 c operating temperature range receiver designed for applications requiring ultra low ? > 400 mbps (200 mhz) switching rates power dissipation, low noise and high data rates. the ? 50 ps differential skew (typical) device is designed to support data rates in excess of 400 mbps (200 mhz) utilizing low voltage differential ? 0.1 ns channel-to-channel skew (typical) signaling (lvds) technology. ? 2.5 ns maximum propagation delay the DS90LV028AH accepts low voltage (350 mv ? 3.3v power supply design typical) differential input signals and translates them ? flow-through pinout to 3v cmos output levels. the DS90LV028AH has a ? power down high impedance on lvds inputs flow-through design for easy pcb layout. ? low power design (18mw @ 3.3v static) the DS90LV028AH and companion lvds line driver ? lvds inputs accept lvds/cml/lvpecl ds90lv027ah provide a new alternative to high power pecl/ecl devices for high speed point-to- signals point interface applications. ? conforms to ansi/tia/eia-644 standard ? available in soic package connection diagram figure 1. soic see package number d(r-pdso-g8) functional diagram truth table inputs output [r in +] ? [r in ? ] r out v id 0.1v h v id ? 0.1v l these devices have limited built-in esd protection. the leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the mos gates. 1 please be aware that an important notice concerning availability, standard warranty, and use in critical applications of texas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. 2 all trademarks are the property of their respective owners. production data information is current as of publication date. copyright ? 2005 ? 2013, texas instruments incorporated products conform to specifications per the terms of the texas instruments standard warranty. production processing does not necessarily include testing of all parameters.
nrnd DS90LV028AH snls201a ? september 2005 ? revised april 2013 www.ti.com absolute maximum ratings (1) (2) supply voltage (v cc ) ? 0.3v to +4v input voltage (r in +, r in ? ) ? 0.3v to +3.9v output voltage (r out ) ? 0.3v to v cc + 0.3v maximum package power dissipation @ +25 c d package 1025 mw derate d package 8.2 mw/ c above +25 c storage temperature range ? 65 c to +150 c lead temperature range soldering (4 sec.) +260 c maximum junction temperature +150 c esd rating (3) (hbm 1.5 k , 100 pf) 7 kv (eiaj 0 , 200 pf) 500 v (1) ? absolute maximum ratings ? are those values beyond which the safety of the device cannot be specified. they are not meant to imply that the devices should be operated at these limits. electrical characteristics specifies conditions of device operation. (2) if military/aerospace specified devices are required, please contact the texas instruments sales office/distributors for availability and specifications. (3) esd rating: hbm (1.5 k , 100 pf) 7 kv eiaj (0 , 200 pf) 500v recommended operating conditions min typ max units supply voltage (v cc ) +3.0 +3.3 +3.6 v receiver input voltage gnd 3.0 v operating free air temperature (t a ) ? 40 25 +125 c 2 submit documentation feedback copyright ? 2005 ? 2013, texas instruments incorporated product folder links: DS90LV028AH
nrnd DS90LV028AH www.ti.com snls201a ? september 2005 ? revised april 2013 electrical characteristics over supply voltage and operating temperature ranges, unless otherwise specified. (1) (2) symbol parameter conditions pin min typ max units v th differential input high threshold v cm = +1.2v, 0v, 3v (3) r in +, +100 mv r in ? v tl differential input low threshold ? 100 mv i in input current v in = +2.8v v cc = 3.6v or 0v ? 10 1 +10 a v in = 0v ? 10 1 +10 a v in = +3.6v v cc = 0v -20 +20 a v oh output high voltage i oh = ? 0.4 ma, v id = +200 mv r out 2.7 3.1 v i oh = ? 0.4 ma, inputs terminated 2.7 3.1 v i oh = ? 0.4 ma, inputs shorted 2.7 3.1 v v ol output low voltage i ol = 2 ma, v id = ? 200 mv 0.3 0.5 v i os output short circuit current v out = 0v (4) ? 15 ? 50 ? 100 ma v cl input clamp voltage i cl = ? 18 ma ? 1.5 ? 0.8 v i cc no load supply current inputs open v cc 5.4 9 ma (1) current into device pins is defined as positive. current out of device pins is defined as negative. all voltages are referenced to ground unless otherwise specified (such as v id ). (2) all typicals are given for: v cc = +3.3v and t a = +25 c. (3) v cc is always higher than r in + and r in ? voltage. r in + and r in ? are allowed to have voltage range ? 0.05v to +3.05v. v id is not allowed to be greater than 100 mv when v cm = 0v or 3v. (4) output short circuit current (i os ) is specified as magnitude only, minus sign indicates direction only. only one output should be shorted at a time, do not exceed maximum junction temperature specification. switching characteristics v cc = +3.3v 10%, t a = ? 40 c to +125 c (1) (2) symbol parameter conditions min typ max units t phld differential propagation delay high to low c l = 15 pf 1.0 1.6 2.5 ns v id = 200 mv t plhd differential propagation delay low to high 1.0 1.7 2.5 ns ( figure 2 and figure 3 ) t skd1 differential pulse skew |t phld ? t plhd | (3) 0 50 650 ps t skd2 differential channel-to-channel skew-same device (4) 0 0.1 0.5 ns t skd3 differential part to part skew (5) 0 1.0 ns t skd4 differential part to part skew (6) 0 1.5 ns t tlh rise time 325 800 ps t thl fall time 225 800 ps f max maximum operating frequency (7) 200 250 mhz (1) c l includes probe and jig capacitance. (2) generator waveform for all tests unless otherwise specified: f = 1 mhz, z o = 50 , t r and t f (0% to 100%) 3 ns for r in . (3) t skd1 is the magnitude difference in differential propagation delay time between the positive-going-edge and the negative-going-edge of the same channel. (4) t skd2 is the differential channel-to-channel skew of any event on the same device. this specification applies to devices having multiple receivers within the integrated circuit. (5) t skd3 , part to part skew, is the differential channel-to-channel skew of any event between devices. this specification applies to devices at the same v cc and within 5 c of each other within the operating temperature range. (6) t skd4 , part to part skew, is the differential channel-to-channel skew of any event between devices. this specification applies to devices over the recommended operating temperature and voltage ranges, and across process distribution. t skd4 is defined as |max ? min| differential propagation delay. (7) f max generator input conditions: t r = t f < 1 ns (0% to 100%), 50% duty cycle, differential (1.05v to 1.35 peak to peak). output criteria: 60%/40% duty cycle, v ol (max 0.4v), v oh (min 2.7v), load = 15 pf (stray plus probes). copyright ? 2005 ? 2013, texas instruments incorporated submit documentation feedback 3 product folder links: DS90LV028AH
nrnd DS90LV028AH snls201a ? september 2005 ? revised april 2013 www.ti.com parameter measurement information figure 2. receiver propagation delay and transition time test circuit figure 3. receiver propagation delay and transition time waveforms typical application balanced system figure 4. point-to-point application application information general application guidelines and hints for lvds drivers and receivers may be found in the following application notes: lvds owner's manual (lit #550062-003), an-808 ( snla028 ), an-977 ( snla166 ), an-971 ( snla165 ), an-916 ( snla219 ), an-805 ( snoa233 ), an-903 ( snla034 ). lvds drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in figure 4 . this configuration provides a clean signaling environment for the fast edge rates of the drivers. the receiver is connected to the driver through a balanced media which may be a standard twisted pair cable, a parallel pair cable, or simply pcb traces. typically the characteristic impedance of the media is in the range of 100 . a termination resistor of 100 should be selected to match the media, and is located as close to the receiver input pins as possible. the termination resistor converts the driver output (current mode) into a voltage that is detected by the receiver. other configurations are possible such as a multi-receiver configuration, but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as well as ground shifting, noise margin limits, and total termination loading must be taken into account. 4 submit documentation feedback copyright ? 2005 ? 2013, texas instruments incorporated product folder links: DS90LV028AH
nrnd DS90LV028AH www.ti.com snls201a ? september 2005 ? revised april 2013 the DS90LV028AH differential line receiver is capable of detecting signals as low as 100 mv, over a 1v common-mode range centered around +1.2v. this is related to the driver offset voltage which is typically +1.2v. the driven signal is centered around this voltage and may shift 1v around this center point. the 1v shifting may be the result of a ground potential difference between the driver's ground reference and the receiver's ground reference, the common-mode effects of coupled noise, or a combination of the two. the ac parameters of both receiver input pins are optimized for a recommended operating input voltage range of 0v to +2.4v (measured from each pin to ground). the device will operate for receiver input voltages up to v cc , but exceeding v cc will turn on the esd protection circuitry which will clamp the bus voltages. power decoupling recommendations bypass capacitors must be used on power pins. use high frequency ceramic (surface mount is recommended) 0.1 f and 0.01 f capacitors in parallel at the power supply pin with the smallest value capacitor closest to the device supply pin. additional scattered capacitors over the printed circuit board will improve decoupling. multiple vias should be used to connect the decoupling capacitors to the power planes. a 10 f (35v) or greater solid tantalum capacitor should be connected at the power entry point on the printed circuit board between the supply and ground. pc board considerations use at least 4 pcb board layers (top to bottom): lvds signals, ground, power, ttl signals. isolate ttl signals from lvds signals, otherwise the ttl signals may couple onto the lvds lines. it is best to put ttl and lvds signals on different layers which are isolated by a power/ground plane(s). keep drivers and receivers as close to the (lvds port side) connectors as possible. differential traces use controlled impedance traces which match the differential impedance of your transmission medium (ie. cable) and termination resistor. run the differential pair trace lines as close together as possible as soon as they leave the ic (stubs should be < 10mm long). this will help eliminate reflections and ensure noise is coupled as common-mode. in fact, we have seen that differential signals which are 1mm apart radiate far less noise than traces 3mm apart since magnetic field cancellation is much better with the closer traces. in addition, noise induced on the differential lines is much more likely to appear as common-mode which is rejected by the receiver. match electrical lengths between traces to reduce skew. skew between the signals of a pair means a phase difference between signals which destroys the magnetic field cancellation benefits of differential signals and emi will result! (note that the velocity of propagation, v = c/e r where c (the speed of light) = 0.2997mm/ps or 0.0118 in/ps). do not rely solely on the autoroute function for differential traces. carefully review dimensions to match differential impedance and provide isolation for the differential lines. minimize the number of vias and other discontinuities on the line. avoid 90 turns (these cause impedance discontinuities). use arcs or 45 bevels. within a pair of traces, the distance between the two traces should be minimized to maintain common-mode rejection of the receivers. on the printed circuit board, this distance should remain constant to avoid discontinuities in differential impedance. minor violations at connection points are allowable. termination use a termination resistor which best matches the differential impedance or your transmission line. the resistor should be between 90 ? and 130 ? . remember that the current mode outputs need the termination resistor to generate the differential voltage. lvds will not work correctly without resistor termination. typically, connecting a single resistor across the pair at the receiver end will suffice. surface mount 1% - 2% resistors are the best. pcb stubs, component lead, and the distance from the termination to the receiver inputs should be minimized. the distance between the termination resistor and the receiver should be < 10mm (12mm max). copyright ? 2005 ? 2013, texas instruments incorporated submit documentation feedback 5 product folder links: DS90LV028AH
nrnd DS90LV028AH snls201a ? september 2005 ? revised april 2013 www.ti.com input failsafe biasing external pull up and pull down resistors may be used to provide enough of an offset to enable an input failsafe under open-circuit conditions. this configuration ties the positive lvds input pin to vdd thru a pull up resistor and the negative lvds input pin is tied to gnd by a pull down resistor. the pull up and pull down resistors should be in the 5k ? to 15k ? range to minimize loading and waveform distortion to the driver. the common- mode bias point ideally should be set to approximately 1.2v (less than 1.75v) to be compatible with the internal circuitry. please refer to application note an-1194 ( snla051 ), ? failsafe biasing of lvds interfaces ? for more information. probing lvds transmission lines always use high impedance ( > 100k ? ), low capacitance ( < 2 pf) scope probes with a wide bandwidth (1 ghz) scope. improper probing will give deceiving results. cables and connectors, general comments when choosing cable and connectors for lvds it is important to remember: use controlled impedance media. the cables and connectors you use should have a matched differential impedance of about 100 ? . they should not introduce major impedance discontinuities. balanced cables (e.g. twisted pair) are usually better than unbalanced cables (ribbon cable, simple coax) for noise reduction and signal quality. balanced cables tend to generate less emi due to field canceling effects and also tend to pick up electromagnetic radiation a common-mode (not differential mode) noise which is rejected by the receiver. for cable distances < 0.5m, most cables can be made to work effectively. for distances 0.5m d 10m, cat 3 (category 3) twisted pair cable works well, is readily available and relatively inexpensive. pin descriptions pin no. name description 1, 4 r in - inverting receiver input pin 2, 3 r in + non-inverting receiver input pin 6, 7 r out receiver output pin 8 v cc power supply pin, +3.3v 0.3v 5 gnd ground pin 6 submit documentation feedback copyright ? 2005 ? 2013, texas instruments incorporated product folder links: DS90LV028AH
nrnd DS90LV028AH www.ti.com snls201a ? september 2005 ? revised april 2013 typical performance curves output high voltage vs output low voltage vs power supply voltage power supply voltage output short circuit current vs differential transition voltage vs power supply voltage power supply voltage power supply current differential propagation delay vs vs frequency power supply voltage copyright ? 2005 ? 2013, texas instruments incorporated submit documentation feedback 7 product folder links: DS90LV028AH
nrnd DS90LV028AH snls201a ? september 2005 ? revised april 2013 www.ti.com typical performance curves (continued) differential propagation delay vs differential propagation delay vs differential input voltage common-mode voltage transition time vs differential skew vs power supply voltage power supply voltage differential propagation delay differential propagation delay vs load vs load 8 submit documentation feedback copyright ? 2005 ? 2013, texas instruments incorporated product folder links: DS90LV028AH
nrnd DS90LV028AH www.ti.com snls201a ? september 2005 ? revised april 2013 typical performance curves (continued) transition time transition time vs load vs load copyright ? 2005 ? 2013, texas instruments incorporated submit documentation feedback 9 product folder links: DS90LV028AH
nrnd DS90LV028AH snls201a ? september 2005 ? revised april 2013 www.ti.com revision history changes from original (april 2013) to revision a page ? changed layout of national data sheet to ti format ............................................................................................................ 8 10 submit documentation feedback copyright ? 2005 ? 2013, texas instruments incorporated product folder links: DS90LV028AH
package option addendum www.ti.com 30-oct-2013 addendum-page 1 packaging information orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish (6) msl peak temp (3) op temp (c) device marking (4/5) samples DS90LV028AHm/nopb nrnd soic d 8 95 green (rohs & no sb/br) cu sn level-1-260c-unlim 90lv0 28ahm DS90LV028AHmx/nopb nrnd soic d 8 2500 green (rohs & no sb/br) cu sn level-1-260c-unlim 90lv0 28ahm (1) the marketing status values are defined as follows: active: product device recommended for new designs. lifebuy: ti has announced that the device will be discontinued, and a lifetime-buy period is in effect. nrnd: not recommended for new designs. device is in production to support existing customers, but ti does not recommend using this part in a new design. preview: device has been announced but is not in production. samples may or may not be available. obsolete: ti has discontinued the production of the device. (2) eco plan - the planned eco-friendly classification: pb-free (rohs), pb-free (rohs exempt), or green (rohs & no sb/br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. tbd: the pb-free/green conversion plan has not been defined. pb-free (rohs): ti's terms "lead-free" or "pb-free" mean semiconductor products that are compatible with the current rohs requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. where designed to be soldered at high temperatures, ti pb-free products are suitable for use in specified lead-free processes. pb-free (rohs exempt): this component has a rohs exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. the component is otherwise considered pb-free (rohs compatible) as defined above. green (rohs & no sb/br): ti defines "green" to mean pb-free (rohs compatible), and free of bromine (br) and antimony (sb) based flame retardants (br or sb do not exceed 0.1% by weight in homogeneous material) (3) msl, peak temp. - the moisture sensitivity level rating according to the jedec industry standard classifications, and peak solder temperature. (4) there may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) multiple device markings will be inside parentheses. only one device marking contained in parentheses and separated by a "~" will appear on a device. if a line is indented then it is a continuation of the previous line and the two combined represent the entire device marking for that device. (6) lead/ball finish - orderable devices may have multiple material finish options. finish options are separated by a vertical ruled line. lead/ball finish values may wrap to two lines if the finish value exceeds the maximum column width. important information and disclaimer: the information provided on this page represents ti's knowledge and belief as of the date that it is provided. ti bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. efforts are underway to better integrate information from third parties. ti has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ti and ti suppliers consider certain information to be proprietary, and thus cas numbers and other limited information may not be available for release.
package option addendum www.ti.com 30-oct-2013 addendum-page 2 in no event shall ti's liability arising out of such information exceed the total purchase price of the ti part(s) at issue in this document sold by ti to customer on an annual basis.
tape and reel information *all dimensions are nominal device package type package drawing pins spq reel diameter (mm) reel width w1 (mm) a0 (mm) b0 (mm) k0 (mm) p1 (mm) w (mm) pin1 quadrant DS90LV028AHmx/nopb soic d 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 q1 package materials information www.ti.com 11-oct-2013 pack materials-page 1
*all dimensions are nominal device package type package drawing pins spq length (mm) width (mm) height (mm) DS90LV028AHmx/nopb soic d 8 2500 367.0 367.0 35.0 package materials information www.ti.com 11-oct-2013 pack materials-page 2

important notice texas instruments incorporated and its subsidiaries (ti) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per jesd46, latest issue, and to discontinue any product or service per jesd48, latest issue. buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. all semiconductor products (also referred to herein as ? components ? ) are sold subject to ti ? s terms and conditions of sale supplied at the time of order acknowledgment. ti warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in ti ? s terms and conditions of sale of semiconductor products. testing and other quality control techniques are used to the extent ti deems necessary to support this warranty. except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. ti assumes no liability for applications assistance or the design of buyers ? products. buyers are responsible for their products and applications using ti components. to minimize the risks associated with buyers ? products and applications, buyers should provide adequate design and operating safeguards. ti does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which ti components or services are used. information published by ti regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ti under the patents or other intellectual property of ti. reproduction of significant portions of ti information in ti data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. ti is not responsible or liable for such altered documentation. information of third parties may be subject to additional restrictions. resale of ti components or services with statements different from or beyond the parameters stated by ti for that component or service voids all express and any implied warranties for the associated ti component or service and is an unfair and deceptive business practice. ti is not responsible or liable for any such statements. buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of ti components in its applications, notwithstanding any applications-related information or support that may be provided by ti. buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. buyer will fully indemnify ti and its representatives against any damages arising out of the use of any ti components in safety-critical applications. in some cases, ti components may be promoted specifically to facilitate safety-related applications. with such components, ti ? s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. nonetheless, such components are subject to these terms. no ti components are authorized for use in fda class iii (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. only those ti components which ti has specifically designated as military grade or ? enhanced plastic ? are designed and intended for use in military/aerospace applications or environments. buyer acknowledges and agrees that any military or aerospace use of ti components which have not been so designated is solely at the buyer ' s risk, and that buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. ti has specifically designated certain components as meeting iso/ts16949 requirements, mainly for automotive use. in any case of use of non-designated products, ti will not be responsible for any failure to meet iso/ts16949. products applications audio www.ti.com/audio automotive and transportation www.ti.com/automotive amplifiers amplifier.ti.com communications and telecom www.ti.com/communications data converters dataconverter.ti.com computers and peripherals www.ti.com/computers dlp ? products www.dlp.com consumer electronics www.ti.com/consumer-apps dsp dsp.ti.com energy and lighting www.ti.com/energy clocks and timers www.ti.com/clocks industrial www.ti.com/industrial interface interface.ti.com medical www.ti.com/medical logic logic.ti.com security www.ti.com/security power mgmt power.ti.com space, avionics and defense www.ti.com/space-avionics-defense microcontrollers microcontroller.ti.com video and imaging www.ti.com/video rfid www.ti-rfid.com omap applications processors www.ti.com/omap ti e2e community e2e.ti.com wireless connectivity www.ti.com/wirelessconnectivity mailing address: texas instruments, post office box 655303, dallas, texas 75265 copyright ? 2013, texas instruments incorporated


▲Up To Search▲   

 
Price & Availability of DS90LV028AH

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X